Содержание

Ускорение. Равноускоренное движение. Зависимость скорости от времени при равноускоренном движении

Для того чтобы ответить на вопрос, что же такое равноускоренное движение, обратимся к следующему эксперименту. Возьмем движение автомобиля по наклонной плоскости. Автомобиль начинает движение из состояния покоя. Рассмотрим положение автомобиля через одинаковые промежутки времени  (рис. 1). За равные промежутки времени автомобиль проезжал все большие расстояния , совершал все большие и большие перемещения.

Рис. 1. Положение автомобиля через равные промежутки времени

Повторим этот эксперимент, увеличив угол наклона плоскости к поверхности стола (рис. 2). Опять-таки, рассмотрим положение автомобиля через равные промежутки времени.

Рис. 2. Эксперимент с увеличенным углом наклона плоскости к поверхности стола

Обратите внимание, что расстояние, которое проходит автомобиль за равные промежутки времени  увеличивается быстрее, чем в предыдущий раз. Таким образом, и скорость автомобиля растет быстрее . В физике говорят, что во втором случае было большее ускорение.

Ускорение – это физическая величина, равная отношению изменения скорости тела ко времени, за которое это изменение произошло (рис. 3).


Рис. 3. Иллюстрация определения ускорения

где  – текущая или конечная скорость;  – начальная скорость;  – промежуток времени, за который произошло изменение скорости.

Ускорение обозначается буквой , так как этот термин произошел от латинского слова

acceleration – «ускоряться, увеличивать скорость». В физике очень много величин обозначаются от первой буквы их латинского наименования или английского аналога (рис. 4).

Рис. 4. Некоторые физические величины

Записав векторное определение ускорения, перейдем к его скалярному определению – проекции ускорения, ведь чаще всего в курсе 10 класса мы будем работать с прямолинейным движением, где нам достаточно одной оси, как правило, оси х.

Определение ускорения в проекции на ось х:

где

 – проекция ускорения на ось х,  – проекция текущей скорости на ось х,  – проекция начальной скорости на ось х,  или  – промежуток времени, за который произошло изменение проекции скорости.

Рис. 5. Иллюстрация определения проекции ускорения

Формулу ускорения можно записать в виде: – изменения скорости за промежуток времени. Мы приходим еще к одному определению ускорения. Ускорение – это скорость изменения скорости. То есть насколько быстро меняется скорость тела.

Мы ввели новую физическую величину, а значит, необходимо указать, в каких единицах она измеряется, в частности в системе СИ. Изменение скорости  измеряется в , а время

 – в секундах. Тогда:

Если мы говорим, что модуль ускорения равен, например,  – это значит, что за каждую секунду скорость тела изменялась (либо увеличивалась, либо уменьшалась) на  (рис. 6).

Рис. 6. Физический смысл ускорения

Обратите внимание, что мы говорили о модуле ускорения, не сказав ни слова о его направлении.

Естественно, вектор ускорения направлен в ту же сторону, что и вектор изменения скорости . Обратите внимание, что именно вектор изменения скорости, а не просто вектор скорости, ведь она непрерывно меняется. Скорость может менять не только свою величину, но и направление, как, например, в случае криволинейного движения (рис. 7).

Рис. 7. Тело, брошенное под углом к горизонту

Ускорение направлено в сторону вектора изменения скорости: .

Разберем несколько примеров, которые помогут разобраться в том, куда и как направлено ускорение по отношению к скорости.

Задача. Пусть тело двигалось прямолинейно по следующим этапам:

Какой из этих этапов не может следовать сразу за предыдущим?

Решение. Разобьем прямолинейную траекторию тела на 4 этапа.

На первом этапе проекция ускорения равна нулю, тело двигалось равномерно с одной и той же скоростью

.

На втором этапе , то есть тело начало разгоняться и к концу второго этапа увеличило свою скорость.

На третьем этапе проекция скорости меньше нуля, это значит, что тело меняет направление своего движения. То есть, если бы третий этап начался так, как написано в условии, скорость должна была бы быть направлена влево (рис. 8). Но мы знаем, что к концу этапа скорость тела была направлена вправо. Это значит, что переход между вторым и третьим этапом невозможен. Сначала тело должно остановиться, а только потом начать разгоняться в другую сторону.

Рис. 8. Иллюстрация решения задачи

Рассмотрим отдельно переход между третьим и четвертым этапами. На третьем этапе проекция скорости отрицательна, а проекция ускорения положительна. Это значит, что ускорение тела направлено вправо. На четвертом этапе скорость будет направлена, как и на третьем этапе, влево, а ускорение будет отсутствовать, что вполне возможно. На третьем этапе тело тормозило, а на четвертом оно перестанет менять свою скорость (рис. 9).

Рис. 9. Переход между третьим и четвертым этапом

Ответ. Ошибка допущена в переходе между вторым и третьим этапами.

Если тело движется неравномерно, то оно обладает ускорением. Это ускорение может изменяться в очень широком диапазоне даже за небольшой промежуток времени. Самый простой вид неравномерного движения – движение с неизменным ускорением. Такое движение называется равноускоренным.

Равноускоренным называют такое движение, при котором скорость тела за любые равные промежутки времени изменяется на одинаковую величину (рис. 10).

Рис. 10. Иллюстрация равноускоренного движения

Обратите внимание на слово «любые» в определении, как и в случае равномерного движения. Таким образом, еще раз подчеркнем, что равноускоренное движение – это движение с постоянным ускорением.

Примеры равноускоренного движения: движение автомобиля из начала урока (рис. 11), свободное падение (рис. 12) – движение тела в поле силы тяжести, скольжение на льду зимой (рис. 13) и т. д.

Рис. 11. Пример равноускоренного движения

Рис. 12. Пример равноускоренного движения

Рис. 13. Пример равноускоренного движения

На графике (рис. 14) представлены зависимости проекции ускорения от времени для трех тел. У первого тела проекция ускорения положительна и не изменяется. Можно сказать, что тело движется равноускорено и разгоняется. У второго тела проекция ускорения отрицательна, в этом случае тело может не только тормозить, но и разгоняться в сторону, противоположную выбранной оси. Ускорение третьего тела равно нулю. Это совершенно не значит, что тело покоится. Это значит, что оно движется равномерно прямолинейно.

Рис. 14. График зависимости проекции ускорения при равноускоренном движении от времени

Такой анализ графика позволяет привести еще одно определение для уже изученного ранее движения. Равномерное движение – это равноускоренное движение, если ускорение равно нулю.

Для второго тела проекция ускорения меньше нуля. Мы предположили, что оно могло бы тормозить. Почему же такое движение называется равноускоренным, ведь тело замедляется? Можно услышать такой термин, как равнозамедленное движение, но в физике принято пользоваться одним термином – равноускоренное, понимая, что для второго тела проекция ускорения отрицательна.

С решением главной задачи механики мы разберемся на следующем уроке. А оставшуюся часть этого урока мы посвятим закону нахождения зависимости скорости от времени для равноускоренного движения. Он поможет определить не только закон зависимости координаты от времени, но и анализировать и изучать равноускоренное движение.

Для того чтобы найти закон зависимости , вспомним определение ускорения:

где  – текущая или конечная скорость;  – начальная скорость;  – промежуток времени.

Найдем выражение для  из приведенной выше формулы:

 – векторное представление

В проекции на ось х, закон будет иметь следующий вид:

Задача. Чему равен модуль ускорения автомобиля при равноускоренном торможении, если при начальной скорости  время торможения составило ?

Дано:

 

 

 

CИ:

 

Решение:

 

 

 

 

Ответ: .

 

Решение. Так как в задаче речь идет о торможении автомобиля, . Первым пунктом решения является перевод  в СИ.

Модуль ускорения может быть найден как отношение изменения скорости ко времени, за которое это изменение произошло: .

Изменение скорости . Так как в задаче спрашивают о модуле ускорения:

Подставив известные значения, получим:

Ответ: . Таким образом, за каждую секунду скорость тела уменьшалась на .

Графики зависимости проекции скорости равноускоренного движения от времени позволяют анализировать и описывать равноускоренное движение. В первую очередь вспомним формулу:

С точки зрения математики такая зависимость называется линейной, а ее график представляет прямую.

На рис. 15 представлены зависимости скорости от времени для трех разных тел. Первое тело начинает движение из состояния покоя (начальная скорость равна нулю). Проекция его ускорения положительна, это значит, что тело разгоняется. Второе тело имеет начальную скорость , проекция ускорения равна нулю. Таким образом, скорость тела не меняется, тело движется равномерно прямолинейно. Третье тело имеет также начальную скорость, проекция ускорения отрицательна, но это совсем не значит, что тело движется в сторону, противоположную движению первого тела. Это значит, что до определенного момента времени (точка на оси) тело тормозит (модуль его скорости падает). После этого момента времени модуль скорости начинает расти, а знак проекции скорости меняется. Данная точка называется точкой поворота.

Рис. 15. Графики зависимости проекции скорости равноускоренного движения от времени

Рассмотрим, как движется первое, второе и третье тело, на примере с машинками.

Первое тело начало свое движение из состояния покоя и постепенно увеличивало свою скорость (автомобиль разгоняется) (рис. 16).

Рис. 16. Моделирование движения первого тела

Смоделировать движение второго тела абсолютно точно не получится, ведь оно двигалось равномерно с постоянной скоростью .

Рис. 17. Моделирование движения второго тела

Сначала модуль скорости движения третьего тела уменьшался, т. е. оно тормозило. После чего в какой-то момент времени модуль скорости начал расти, а знак проекции поменялся. Это значит, что тело начало разгоняться в противоположном направлении.

Рис. 18. Моделирование движения третьего тела

Движение тела, брошенного вертикально вверх, – это еще один вариант моделирования движения третьего тела. Например, подбросим ручку. По мере подъема скорость ручки будет уменьшаться, в верхней точке она будет нулевой. После ручка начнет ускоренно падать, то есть изменит свое направление и будет увеличивать скорость движения.

Рис. 19. Моделирование движения третьего тела. Движение тела, брошенного вертикально вверх

Задача. По представленному графику зависимости проекции скорости от времени записать уравнение данной зависимости.

Рис. 20. Задача № 3

Решение. Для начала вспомним формулу:

Таким образом, нам необходимо найти значения  и .

 – проекция скорости в начальный момент времени.

Выбираем удобный для решения промежуток времени, тогда:

Проекция ускорения отрицательна, а значит, ускорение направлено в противоположную сторону выбранной оси.

Искомое уравнение будет иметь вид:

Ответ:

На сегодняшнем уроке мы ввели понятия ускорения и равноускоренного движения.

Равноускоренное движение: формулы, примеры

Равноускоренное движение

Равноускоренное движение — это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение — частный случай равноускоренного движения с ускорением, равным нулю.

Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

В любой точке траектории на тело действует ускорение свободного падения g→, которое не меняется по величине и всегда направлено в одну сторону. 

Равноускоренное движение

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

v=v0+at.

Здесь v0 — начальная скорость тела, a=const — ускорение.

Покажем на графике, что при равноускоренном движении зависимость v(t) имеет вид прямой линии.

Формулы для равноускоренного движения​​​​​​​

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a=v-v0t=BCAC

Чем больше угол β, тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v0=-2 мс; a=0,5 мс2.

Для второго графика: v0=3 мс; a=-13 мс2.

По данному графику можно также вычислить перемещение тела за время t. Как это сделать?

Выделим на графике малый отрезок времени ∆t. Будем считать, что он настолько мал, что движение за время ∆t можно считать

Равноускоренное движение, вектор ускорения, направление, перемещение. Формулы, определение, законы

Тестирование онлайн

Равноускоренное движение

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению, неравномерное движение — это движение с неодинаковой скоростью, по любой траектории. В чем особенность равноускоренного движения? Это неравномерное движение, но которое «равно ускоряется». Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово «равно», получим равное увеличение скорости. А как понимать «равное увеличение скорости», как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.

Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую — 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью — замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение — это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение — это физическая векторная величина, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй — 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды — 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.

Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак «+» пишем, когда тело ускоряется, знак «-» — когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках

На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.

На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на «-2м/с». 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком «минус»!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах

Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;
2) Что характеризует ускорение;
3) Ускорение — вектор. Если тело разгоняется ускорение положительное, если замедляется — ускорение отрицательное;
3) Направление вектора ускорения;
4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один — ускоренно на север, другой — замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго — противоположное движению (он замедляется).


Поезд движется равноускоренно с ускорением a (a>0). Известно, что к концу четвертой секунды скорость поезда равна 6м/с. Что можно сказать о величине пути, пройденном за четвертую секунду? Будет ли этот путь больше, меньше или равен 6м?

Так как поезд движется с ускорением, то скорость его все время возрастает (a>0). Если к концу четвертой секунды скорость равна 6м/с, то в начале четвертой секунды она была меньше 6м/с. Следовательно, путь, пройденный поездом за четвертую секунду, меньше 6м.


Какие из приведенных зависимостей описывают равноускоренное движение?


Уравнение скорости движущегося тела . Каково соответствующее уравнение пути?


*Автомобиль прошел за первую секунду 1м, за вторую секунду 2м, за третью секунду 3м, за четвертую секунду 4м и т.д. Можно ли считать такое движение равноускоренным?

В равноускоренном движении пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел. Следовательно, описанное движение не равноускоренное.


Проекции скорости и ускорения

Для выполнения расчетов скоростей и ускорений необходимо переходить от записи уравнений в векторной форме к записи уравнений в алгебраической форме.

Векторы начальной скорости и ускорениямогут иметь различные направления, поэтому переход от векторной записи уравнений к алгебраической может оказаться весьма трудоемким.

Известно, что проекция суммы двух векторов на какую-либо координатную ось равна сумме проекций слагаемых векторов на ту же ось.

График скорости

Из уравнения следует, что графиком зависимости проекции скорости равноускоренного движения от времени является прямая. Если проекция начальной скорости на ось OX равна нулю, то прямая проходит через начало координат.

Основные виды движения

  1. аn = 0, a = 0 – прямолинейное равномерное движение;

  2. аn = 0, a = const – прямолинейное равнопеременное движение;

  3. аn = 0, a 0 – прямолинейное с переменным ускорением;

  4. аn = const, a = 0 – равномерное по окружности

  5. аn = const, a = const – равнопеременное по окружности

  6. аn const, a const – криволинейное с переменным ускорением.

Вращательное движение твердого тела.

Вращательное движение твердого тела относительно неподвижной оси – движение, при котором все точки твердого тела описывают окружности, центры которых лежат на одной прямой, называемой осью вращения.

Равномерное движение по окружности

Рассмотрим наиболее простой вид вращательного движения, и уделим особое внимание центростремительному ускорению.

При равномерном движении по окружности значение скорости остается постоянным, а направление вектора скорости изменяется в процессе движения.

Из подобия треугольников OAB и BCD следует

Если интервал времени ∆t мал, то мал и угол . При малых значениях угла  длина хорды AB примерно равна длине дуги AB, т.е. . Т.к.,, то получаем

.

Поскольку , то получаем

Период и частота

Промежуток времени, за который тело совершает полный оборот при движении по окружности, называется периодам обращения (Т). Т.к. длина окружности равна 2R, период обращения при равномерном движении тела со скоростью v по окружности радиусом R равняется:

Величина, обратная периоду обращения, называется частотой. Частота показывает, сколько оборотов по окружности совершает тело в единицу времени:

-1)

Физика 9 кл. Скорость прямолинейного равноускоренного движения. График скорости

Физика 9 кл. Скорость прямолинейного равноускоренного движения. График скорости

 

1. Как выглядят формулы, по которой можно рассчитать проекцию вектора мгновенной скорости прямолинейного равноускоренного движения, если известны: а) проекция вектора начальной скорости и проекция вектора ускорения; б) проекция вектора ускорения при том, что начальная скорость равна нулю?

а) Формула проекции вектора мгновенной скорости прямолинейного равноускоренного движения, если известны проекция вектора начальной скорости и проекция вектора ускорения:


б) Формула проекции вектора мгновенной скорости прямолинейного равноускоренного движения, если известны проекция вектора ускорения при том, что начальная скорость равна нулю:

2. Что представляет собой график проекции вектора скорости равноускоренного движения при начальной скорости: а) равной нулю: б) не равной нулю?

В обоих случаях — это прямая линия.

а) Функция vx = v0x + axt — линейная функция с аргументом t, постоянным коэффициентом ах и свободным членом v0x аналогична функции y = kx + b.



Графиком этой функции должна быть прямая.
Расположение этой линии по отношению к осям координат определяется значениями ах и v0x.
Построение графика проекции вектора скорости в зависимости от времени:

Сонаправим ось vx со скоростью движения.
Тогда проекции векторов скорости и ускорения будут положительны.

Для построения заданной прямой достаточно знать координаты (т. е. t и vx) двух любых её точек.
Задав два произвольных значения t, по формуле vx = axt можно определить соответствующие значения vx.
По координатам первой из найденных точек видно, что график зависимости скорости от времени пройдёт через начало координат.

б) Если начальная скорость движения vо не равна нулю, то начальная точка графика будет лежать на вертикальной оси и соответствовать значению vох.
Дальнейшее построение графика аналогично случаю а).

3. Чем сходны и чем отличаются друг от друга движения, графики которых представлены на рисунках?


а) Движение прямолинейное равноускоренное с начальной скоростью 10 м/с.
Тело разгоняется с ускорением 1,4 м/с2.
Вектор скорости и ускорения направлены в одну сторону.
Проекция вектора ускорения положительная.
ах = (14,2 м/с — 10 м/с) : 3 с = 4,2 м/с : 3 с = 1,4 м/с2
Модуль вектора ускорения:
а = |ax| = 1,4 м/с2

б) Движение прямолинейное равноускоренное с начальной скоростью 20 м/с.
Тело тормозит с ускорением 2 м/с2.
Вектор скорости и ускорения направлены в противоположные стороны.
Проекция вектора ускорения отрицательная.
ах = (0 м/с — 20 м/с) : 10 с = — 2 м/с2
Модуль вектора ускорения:
а = |ax| = 2 м/с2

Следующая страница — смотреть

Назад в «Оглавление» — смотреть

Равнопеременное прямолинейное движение | Физика для всех

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

vcp = s / t

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

vx = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

 

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

vx = v0x ± axt

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v0
bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратов поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то уравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx < 0 и х0 = 0 ветви параболы направлены вниз (рис. 1.18).

1.1.3. Ускорение точки при векторном и координатном способах задания движения

Ускорение точкихарактеризует быстроту изменения её вектора скорости. Пусть точка, движущаяся относительно неподвижной системы отсчета, в момент временизанимает положение, а в момент– положение; скорости точки в этих положениях представлены векторамии(рис. 1.1.6). Перенесем начало векторав точкуи построим параллелограмм, в котором диагональю будет, а одной из сторон – вектор. Другая сторона будет изображать вектор,

т. е. приращение вектора за время. Векторная величинаназывается средним ускорением точки за время, векторнаправлен так же, как и вектор.

Ускорением точки в данный момент времени называется вектор , равный пределу, к которому стремитсяпри.

. (1.1.19)

Учитывая формулу (1.1.8), можно записать

. (1.1.20)

Ускорение точки в данный момент времени равно первой производной по времени от вектора скорости точки или второй производной по времени от радиус-вектора точки.

Ускорение точки при координатном способе задания движения

Пусть движение точки задается уравнениями (1.1.2). Формулу (1.1.20) с учетом зависимости (1.1.11) можно представить в следующем виде: , (1.1.21)

где — (1.1.22)

проекции ускорения точки на неподвижные оси декартовых координат.

Следовательно, проекции ускорения точки на неподвижные оси декартовых координат равны первым производным по времени от соответствующих проекций скоростей или вторым производным по времени от соответствующих координат.

Модуль ускорения точки равен

, (1.1.23)

а направление вектора точки определяется направляющими косинусами:

. (1.1.24)

1.1.4. Ускорение точки при естественном способе задания движения

При естественном способе задания движения с точкой М связывают сис-тему отсчёта, представляющую собой осиестественного трёхгранника(рис. 1.1.7).П – соприкасающаяся плоскость к кривой в точкеМ . Плоскость N, проведенная через точкуперпендикулярно касательной в этой точке называетсянормальной плоскостью. Любая прямая, проходящая через точкуи лежащая в этой плоскости является нормалью кривой в точке. Нормаль, расположенная в соприкасающейся плоскости, называетсяглав-ной нормалью. Положительное направление главной нормали определяется ортом главной нормали, направленным в сторону вогнутости кривой. Нормаль, перпендикулярная соприкасающейся плоскости, называетсябинормальюк кривой в точкеМ. Положительное направление бинормали определяется ее ортом, причем, т.е. ортыориентированы друг относительно друга так же, как ортыправой прямоугольной декартовой системы координат. Плоскость, проходящая через касательную и бинормаль, называетсяспрямляющей.

Три взаимно перпендикулярные оси: касательная, главная нормальи бинормальобразуютестественные осикривойв данной точке. Перемещаясь по кривой вместе с точкой, естественные оси, оставаясь ортогональными, изменяют свою ориентацию в пространстве относительно неподвижной системы отсчета.

Разложим вектор ускорения точки на естественные оси.

Дифференцируя выражение (1.1.17) скорости точки по времени, получаем

. (1.1.25)

Здесь первое слагаемое – составляющая вектора ускорения по касатель-ной к траектории – . Второй множитель во втором слагаемом пред-ставим в виде, где модуль— кривизна кривой в данной точкеМ. Векторперпендикулярен ортуи расположен в соприка-сающейся плоскости, его направление совпадает с направлением ортаглав-ной нормали.

Радиусом кривизны кривой в данной точке называется величина .

Следовательно, второе слагаемое в формуле (1.1.25) примет вид и представляет собою составляющую ускорения точки по главной нормали.

Таким образом, ускорение точки при естественном способе задания её движения раскладывается на две составляющие: — ускорение , направленное по касательной к траектории и называемоекасательнымилитангенциаль-ными ускорение, направленное по главной нормали к центру кривизны траектории и называемоенормальнымили центростремительным; ,.

В итоге, формулу (1.1.25) можно представить в виде

. (1.1.26)

Скалярные множители в (1.1.25) являются проекциями ускорения точки на касательную и главную нормаль:

, (1.1.27)

. (1.1.28)

Модуль касательного ускорения равен . (1.1.29)

Из зависимости (1.1.25) видно, что вектор ускорения точки лежит в соприкасающейся плоскости и на бинормаль не проецируется, поэтому.

Касательное ускорение характеризует быстроту изменения вектораскорости по модулюи направлено в сторону скорости при ускоренном движении точки (рис. 1.1.8,а) и в противоположную сторону — при её замедленном движении (рис. 1.1.8,б).

Нормальное ускорение характеризует быстроту изменения вектораскорости по направлениюи направлено всегда в сторону вогнутости траектории. Придвижение точки будет равномерным; приточка движется прямолинейно.

Поскольку векторы ивзаимно перпендикулярны, то модуль ускорения равен:

. (1.1.30)

Вопросы для самопроверки по теме 1.1

1. Что является предметом теоретической механики?

2. Что называется механическим движением материальных тел?

3. В чем состоит метод абстракции в механике?

4. Какими способами задается движение точки?

5. Установите связь между векторным и координатным способами задания движения точки.

6. Как определяют траекторию движения точки, если заданы её уравне-ния движения в проекциях на декартовые оси?

7. Дайте определение скорости точки при векторном и координатном способах задания движения.

8. Дайте определение скорости точки при естественном способе задания её движения.

9. Дайте определение ускорения точки при задании её движения векторным и координатным способами.

10. Перечислите естественные оси, их орты и названия координатных плоскостей.

11. Чем орты естественных осей отличаются от ортов осей неподвижной декартовой системы отсчета?

12. Что характеризует касательное ускорение?

13. Что характеризует нормальное ускорение?

14. Как движется точка при ?

15. Как движется точка при ?

16. Какое движение точки называется равноускоренным, равнозамедлен-ным?

17. Назовите кривые, имеющие постоянный радиус кривизны.

18. Решите самостоятельно задачи 12.4(12.5), 12.9(12.10), 12.14(12.15), 12.22(12.23), 12.25(12.26) из [3].

Отправить ответ

avatar
  Подписаться  
Уведомление о